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Abstract

We consider the contribution of a nonequilibrium chemical potential depending on the shear rate on shear-induced polymer migration. It is
seen that this nonequilibrium contribution strongly enhances, above a threshold of polymer concentration and of shear rate, the migration of
the polymer towards the regions with lower stress. This enhancement may explain why the migration rate experimentally observed is much
higher than that predicted by constitutive laws where the nonequilibrium effects on the chemical potential are ignored.q 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The coupling between viscous effects and diffusion is one
of the most active topics nowadays in rheological analyses.
In particular, shear-induced migration of polymers deserves
the attention of many researchers, both for its practical
aspects (chromatography, separation techniques, and flow
through porous media) and for its theoretical implications
in nonequilibrium thermodynamics and transport theory.
Indeed, this topic is especially attractive, as it deals with
the coupling between vectorial fluxes and tensorial forces,
which is beyond the usual constitutive equations of classical
irreversible thermodynamics, and because it may be a useful
testing ground of nonequilibrium equations of state.

Several authors [1–3] have stressed the need for a
dynamic analysis to understand the following two points:
(a) Polymer diffusivity decreases with increasing flow rate.
This has been linked to the change in the shape of the
molecules that reduce their ability to diffuse through the
solvent. (b) The molecules of the higher-weight species
migrate to low shear regions, which requires negative poly-
mer diffusivity [4–6]. It is assumed that the temperature of

the solution is above its critical point, that no phase separa-
tion occurs upon shearing.

Recently, MacDonald and Muller [7], to whom we refer
for a wide bibliography on this topic, have analyzed the
observed evolution of the concentration profile of a polymer
under the effect of shear in a cone-and-plate configuration.
Their conclusions are extremely challenging, as they show a
discrepancy in two or three orders of magnitude between
theoretical predictions and the observations.

They use as constitutive equation for the diffusion fluxJ,

J � 2D7n 2
D

RT
7·tp; �1�

where n is the polymer concentration (in moles per unit
volume), D the translational diffusivity, R the ideal gas
constant,T absolute temperature andtp the symmetric
second-order tensor representing the polymeric contribution
to the viscous stress. This constitutive equation has been
examined from different macroscopic and microscopic
points of view by Beris et al. [8,9], and it may be found,
for instance, in Ottinger [10], Mavrantzas and Beris [11],
and, in a somewhat different form, in Bhave et al. [12]. The
reader is referred to Beris and Mavrantzas [13] for details
about its microscopic derivation.

MacDonald and Muller have applied Eq. (1) to the analy-
sis of the evolution of the polymer concentration profile in a
cone-and-plate configuration, where the only nonzero
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components of the stress tensortp are given by

tff � 22RTn�l _g�2; tfu � 2RTnl _g �2�
Here,r, f andu have the usual meaning, and they refer to
the radial, axial and azimuthal directions, respectively,l is
the polymer relaxation time and_g the shear rate. In fact, the
relaxation timel appearing in Eq. (2) is an average relaxa-
tion time, because the actual macromolecules have several
(or many) different relaxation times, associated to their
different normal modes. Here we will use only one relaxa-
tion time, for the sake of simplicity and for comparison with
the formulation of MacDonald and Muller.

Combination of Eqs. (1) and (2) and the mass balance
equation

Dn
Dt
� 27·J �3�

whereD=Dt refers to the usual material convective deriva-
tive, yields finally

2n
2t
� D

r2

2

2r
r2 2n

2r
1 brn

� �
�4�

with the parameterb being defined asb � 2�l _g�2. To
obtain Eq. (4) it has been assumed that the steady visco-
metric flow has only a nonzero component of the velocity
(thef component) which depends on ther andu coordi-
nates, that the shear-induced flux in theu direction is negli-
gible when the angle between the cone and the plate
becomes small (as it was in the experiments with to which
the results are compared), and that the convection of mole-
cules by migration contributes negligibly to the stress. The
term inb , arising from the second term in Eq. (1), induces a
flux of solute towards the apex of the cone (shown as arrow
1 in Fig. 1) and it is usually believed that this term produces
the total induced migration.

But, as it was demonstrated by MacDonald and Muller,
this contribution cannot explain by itself the actual rate of
migration. In fact, they have obtained a short-time solution

of Eq. (4) forn�r ; t� and have compared it with their experi-
mental results for polystyrene macromolecules, nearly
monodisperse, of different molecular weights 2:0 × 106

and 4:0 × 106 g=mol (denoted by 2 and 4 M, respectively)
in a solvent of oligomeric polystyrene molecules of 500 g/
mol, in a cone-and-plate configuration sheared at_g � 2 s21.
The initial homogeneous concentration of the molecules of
each solution was 0.20 and 0.12 wt.% for the 2 and 4 M
solutions, respectively. According to an average value of
l obtained from the steady-state shear data, they obtained
for the 2 and 4 M solutions the valuesb2 � 240 and
b4 � 1500, respectively.

However, when they tried to fit the profile obtained from
Eq. (4) with the observed concentration profiles, very severe
discrepancies arose, as they found that the migration was
much faster than predicted by Eq. (4). They tried to fit the
data by allowing eitherb or D to be adjustable parameters.
In this way, they found that to describe the data it is neces-
sary thatb2 � 200 000 andb4 � 1 100 000, instead of the
values mentioned previously. It is seen that the discrepancy
between the observed and the measuredb , which expresses
in Eq. (4) the shear-induced flux, is almost of three orders of
magnitude.

The aim of this paper is to point out how a simple general-
ization of Eq. (1) previously used in other contexts (see
Refs. [13,14]) may partially alleviate this severe discre-
pancy, and may at the same time be helpful to understand
the nonequilibrium modification of the equation of state of
fluids under viscous stress.

2. Nonequilibrium chemical potential

According to classical thermodynamics, it is more funda-
mental to express the diffusion flux in terms of the gradient
of the chemical potential rather than in terms of the concen-
tration gradient. Indeed, it is the chemical potentialm which
appears as the quantity conjugated to the variation in the
number of moles of the constituents of thermodynamic
systems. Thus, by following Jou et al. [13,14], we write
instead of Eq. (1)

J � 2 ~D7m 2
D

RT
7·tp �5�

wherem is the chemical potential of the solute and~D is
related to the classical diffusion coefficientD by
D � ~D�2meq=2n�. Here,meq is the local-equilibrium chemi-
cal potential of the solute. The essential point is that in
presence of a nonvanishingtp, m itself may contain contri-
butions of tp, thus providing another possible coupling,
neglected up to now, between viscous effects and diffusion,
besides the term in7·tp. Eq. (5), rather than being in contra-
diction with Eq. (1), is an extension of it to the nonlinear
domain, and it reduces to it when one ignores the nonequi-
librium (nonlinear) contributions tom .

In order to be explicit, we use, as in Refs. [13–15], the
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Fig. 1. The flows of matter are indicated in the cone-and-plate configura-
tion. Arrow (1) shows the shear-induced flow described by the second term
in the right-hand-side of Eqs. (1) and (5); arrows (2) and (3) indicate the
diffusion flux corresponding to the first term in the right-hand-side of Eq.
(5) when the effective diffusion coefficient (10) is positive or negative.
When it is positive, the diffusion flux (2) opposes to the shear-induced
flow (1), whereas when it is negative, the diffusion flux (3) enhances the
shear-induced effects. In contrast with Eq. (5), which uses the nonequili-
brium chemical potential, Eq. (1) has only a positive diffusion coefficient,
and cannot describe the enhancement of the shear-induced flow far from
equilibrium.



results of extended irreversible thermodynamics, according
to which the Gibb’s free energyG of a fluid system of
volumeV in presence of a viscous stresstp is

G�T;p;Ni ; tp� � Geq�T;p;Ni�1
1
4

JVtp : tp �6�

whereGeq is the local-equilibrium value of the free energy at
the corresponding values ofT, p andNi (we takeN for the
number of moles of the solute andN0 the number of moles of
the solvent) andJ is the so-called steady-state compliance,
defined asJ � l=h. The reader interested in the origin and
meaning of Eq. (6) will find them extensively discussed in
Refs. [13–15]. Here, it is sufficient to know that Eq. (6) is
supported by the kinetic theory of polymer solutions, and
which it has a rather wide range of applicability, from ideal
gases to nuclear matter, provided one identifies in any case
the corresponding microscopic expressions for the stress
tensor. Furthermore, the idea of a free energy including
nonequilibrium contributions appears also in a very natural
way in the framework of the Poisson bracket formulation of
thermodynamics of flowing systems with internal micro-
structure [8], which is promising as a rather general frame-
work for the theoretical modeling of the rheological
constitutive equations of polymer solutions.

The chemical potential of the solute is defined by
m � �2G=2N�T;p;tp . If we expressN in terms of the solute
concentrationn (moles per unit volume) we haveN � nV;
andm may be expressed as

m � 1
V
�1 2 V 0n� 2G

2n

� �
T;p;tp

�7�

whereV 0 � 2V=2N is the partial molar volume of the solute.

The term in parentheses in Eq. (7) takes into account the fact
that a variation ofN at constantp produces a change in the
total volumeV.

According to Eqs. (6) and (7), the chemical potential of
the solute is

m � meq 1
1

4V
�1 2 V 0n� 2

2n
�JV�tp : tp �8�

with meq the local-equilibrium chemical potential. The use
of the generalized chemical potential leads us to define an
effective diffusion coefficient asDef � ~D�2m=2n� or, by
writing ~D in terms of the classical diffusion coefficientD,

Def � D
�2meq=2n�

2m

2n

� �
�9�

Introducing Eq. (8) into Eq. (9) we have

Def � D 1 1
1

�2meq=2n�
2

2n
�1 2 V 0n�

4V
2

2n
�JV�tp : tp

( )" #
�10�

If the contribution of the term intp : tp were negative, it
would induce a flow of solute towards higher solute concen-
trations, i.e. opposite to the usual Fickian diffusion. In the
situation being examined here, this would reinforce the
contribution of the term in7·tp; which yields a migration
of the molecules of the solute towards the center, and would
render the migration process much faster. The situation is
represented in Fig. 1.

3. Results and discussion

To see whether the nonequilibrium contribution toDef is
negative requires a detailed knowledge ofmeq; V 0 andJ on
concentration. We do not have enough detailed information
about the system studied by MacDonald and Muller, but we
may temptatively study from an analogous situation of poly-
styrene in transdecalin, whose nonequilibrium chemical
potential under flow has been studied in detail by Criado-
Sancho et al. [13,15]. For this system, the form of�2m=2n�
for a giventp is plotted in Fig. 2. To obtain this figure we
have used for the equilibrium chemical potential the expres-
sion from the classical Flory–Huggins model [13,15] and to
evaluate the nonequilibrium contribution we have taken for
J the formula following from the Rouse–Zimm model,
namely

J � CM
cRT

1 2
hs

h

� �2

�11�

wherec is the polymer concentration expressed in terms of
mass per unit volume,h is the viscosity of the solution,h s

the viscosity of the solvent,M the molar mass of the solute,
and C a constant which takes the value 0.4 in the Rouse
model (which ignores hydrodynamic interactions) and 0.206
in the Zimm model (which includes such interactions).
Furthermore, as in [15,16] we have taken forh�c� the
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Fig. 2. For different Deborah numbers, the variation of�2m=2 ~c�, which is
proportional to the polymer effective diffusivity, in terms of the reduced
concentration~c is presented, for polystyrene in transdecalin solution. The
discontinuous line corresponds to the equilibrium Flory–Huggins contribu-
tion. It is seen that for~c higher than a critical value approximately equal
to 0.5, and for high enough value of the Deborah number, the effective
diffusivity becomes negative.



usual Huggins expression

h

hs
� 1 1 �h�c 1 k�h�2c2 �12�

The expression for the nonequilibrium contribution to the
chemical potential of the solute is thus given, after some
tedious calculations which may be found explicitly in Ref.
[15]:

1
RT

mneq� CV1M�h�
4R2T2

� M�h�
V1

F� ~c�
~c

1 2
M�h�
~cV1

2 m
� �

P5� ~c�
P6� ~c�

� �
tp : tp �13�

wherem is the ratio between the molar volumes of the solute
and the solvent,V1 the molar volume of the solvent,~c the
reduced concentration defined by~c� �h�c (note that ~c is
related to n by means of ~c� �h�nM�. The functions
F� ~c�;P5� ~c� and P6� ~c� are auxiliary functions which allow
to simplify the notation: in particular,F� ~c� arises from
Eqs. (11) and (12) asJ � �CM�h�=RT�F� ~c�; in such a way
that

F�c� � ~c
1 1 k~c

1 1 ~c 1 k~c2

� �2

On the other side, the two other functionsP5� ~c� andP6� ~c�
are related to the derivatives ofF� ~c� with respect to
the reduced concentration and are defined, respectively,
as P5� ~c� � �k 2 1� ~c2 1 �k2 2 3k� ~c3 2 3k2 ~c4 2 k3 ~c5 and
P6� ~c� � �1 1 ~c 1 k~c2�3. These functions do not hide any
physical contents but are only a mean to give a compact
way to the rather cumbersome expressions. The corre-
sponding results for�2m=2n� for a giventp are plotted in

Fig. 2 for the system PS/TD with a polymer molar
mass of 520 kg mol21, where the valuesk � 1:40;
�h� � 0:043 m3 kg21 andhs � 0:0023 Pa s are used, as in
Refs. [16,17].

It is seen in Fig. 2 that for low enough concentrations
�2m=2n�; and thereforeDef is positive, whereas for higher
concentrations�2m=2n� and consequentlyDef is negative. As
it is appreciated in Fig. 2, the critical reduced concentration
for this transition is given by~c < 0:5. This value corre-
sponds to a volume fractionf (which in the system under
consideration is given byf � 2:168× 1022 ~c) of 0.01 and
to a corresponding mass percentage of 1.3 wt.%.

It should be also mentioned than in the calculation lead-
ing to Fig. 2, use has been made of the Rouse expression for
the steady state complianceJ � 0:4�nRT�21�1 2 �hs=h��2;
instead of the simplest approximationJ � �nRT�21, which
would yield an opposite sign for the nonequilibrium contri-
butions to the chemical potential. The need of using the
rigorous expression forJ instead of its simplest scaling
law approximation has already been emphasized in Ref.
[15] in the different context of shear-induced shift of the
critical point in dilute polymer solutions. Here, the need
of the use of the rigorous expression forJ is confirmed on
a different physical situation.

In the cone-and-plate configuration considered by
MacDonald and Muller, tp : tp � t2

ff 1 2t2
fu �

2�nRT�2�2�l _g�4 1 �l _g�2�; i.e. the dependence of the
nonclassical term onl _g is rather strong. A simple estima-
tion of the order of magnitude ofDef=D for the situations of
interest may be obtained from Fig. 2, by taking into account
that Def=D � �2m=2n�=�2meq=2n� for ~c < 1:5 andx� l _g <
2; which is of the order of21, as it may be seen in Fig. 2,
and taking into account the dependence of�2m=2n� with
respect tol _g is of the order of�l _g�4. Then, it is obtained
that forl _g < 12 andl _g � 25; (corresponding to the situa-
tions studied by MacDonald and Muller),Def=D is of order
103 and 104, respectively. A detailed calculation for the
system studied by MacDonald and Muller is up to now
not possible with the data available to us, but the order of
magnitude of the correction is consistent with their data.
Indeed, they refer that the observed effects could be
described if one had for the absolute value of the diffusion
coefficient 8:1 × 10210 cm2 s21 instead of the experimental
value at rest, 6:7 × 10213 cm2 s21, in the solution 2 M, or
5:1 × 10210 cm2 s21 instead of the experimental value at
rest, 5:1 × 10213 cm2 s21, in the 4 M solution. In any case,
it is seen that the effect proposed here is not at all negligible
but dominant.

Therefore, effective polymer diffusivity depends on the
shear rate, molecular weight (through the dependence of the
relaxation time) and the concentration. In Fig. 3, the corre-
sponding effective polymer diffusivity versus the Deborah
numberl _g for the same system of Fig. 2 is presented, for
several values of the reduced concentration. For low values
of the concentration, the effective diffusivity is always posi-
tive and increases with the shear rate and the molecular
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Fig. 3. For different reduced concentrations~c; it is shown�2m=2 ~c�; which is
proportional to the polymer effective diffusivity, as a function of the
Deborah numberx� l _g ; for polystyrene in transdecalin solution. For~c
lower than the critical value~c < 0:5 the effective diffusivity is always
positive, whereas for values of~c higher than the critical one, the effective
diffusivity becomes negative far enough from equilibrium (i.e. for suffi-
ciently high shear rates).



weight. In this range of concentration the induced migration
seems not possible, or at least very slow. However, for
reduced concentrations higher than the critical one, the
diffusivity becomes negative for sufficiently high values of
the shear rate, the decrease being steeper for higher mole-
cular weights. In the figures, we do not consider reduced
concentrations higher than two, since the dilute solution
approximation used in Ref. [15] would be no longer valid.
Therefore, we will not extrapolate the behavior of the effec-
tive polymer diffusivity beyond this value.

We conclude that the stress contribution to the chemical
potential of the polymer has important effects with respect
to the previous formulation, where the gradient ofn rather
than the gradient ofm were considered. The following
points are especially worth mentioning:

• For a given concentration (higher than a critical value),
the effective diffusion coefficient is reduced when the
shear stress increases, and it becomes negative. In this
regime, the nonequilibrium contribution to the chemical
potential considerably enhances the polymer migration.
This may explain why the migration observed is much
faster than the migration predicted by the simpler Eq. (1).
It would be interesting to relate this negative derivative
of the generalized chemical potential with concentration
to some kind of phase separation. In fact, our description
could be interpreted as describing the dynamical aspects
of a phase separation in the initially homogeneous and
stable mixture. However, it is important to stress that the
derivative of the local-equilibrium chemical potential
with respect to concentration is positive, and therefore
no phase separation would occur from the purely local-
equilibrium point of view. It is the nonequilibrium part of
the chemical potential which changes sign for sufficiently
high value of the shear rate. From this point of view, one
would have a shear-induced phase separation: the
mixture splits in two different bulk phases with different
solute concentrations, one of them (more concentrated)
near the apex of the cone and the other one (more dilute)
near the edge of the viscometer; and the shear-induced
transport would describe the dynamics of this separation
from the homogeneous phase to the heterogeneous situa-
tion.

• In Fig. 3 we can see that for a given value of the concen-
tration, the effective diffusion coefficient becomes posi-
tive for values of the shear rate lower than some critical
value. Thus, at low shear rates, the only thermodynamic
force leading migration is the coupling of the second term
in Eq. (5), and migration is very slow. For higher shear
rates, the diffusion coefficient becomes negative and
migration is much faster. This feature is also briefly
commented by MacDonald and Muller.

• From the point of view of the thermodynamic analysis, a
concentration transition is found in the behavior of the
polymer diffusivity under flow, which changes sign from
positive to negative, depending on the concentration, at a

given value of the shear rate. This point seems a new one
and gives the minimum concentration condition to obtain
induced migration in a shear flow. This may explain why
the polymer concentration in the depletion zone near the
edge of the plane–and–cone rheometer does not tend to
zero with time, but to a nonvanishing value. Indeed,
when the polymer concentration has been reduced, by
the migration process, to values lower than the critical
one, the effective diffusion coefficient becomes positive,
and the influence of the term in7:tp is cancelled by the
diffusion term. However, a rigorous analysis of the situa-
tion near the walls should take into consideration the
possible effects of the interaction between the wall and
the polymer, which could contribute to the form of the
free energy [18].

To understand better this concentration transition, we
think that a combination of macroscopic and microscopic
ideas is essential to obtain a fast progress in the field. Essen-
tially, it may be seen as a competition on the influence of
two factors on the chemical potential, namely, concentration
and shear stress. Indeed, under shear stress, the macromo-
lecules become distorted and aligned by the flow, and there-
fore their free energy is modified with respect to the
equilibrium free energy. This is the intuitive origin of the
nonequilibrium contribution to the chemical potential.

The present analysis is qualitative rather than rigorously
quantitative. Indeed, we do not know the behavior ofmeq; V

0

and J on concentration for the solution studied experi-
mentally by MacDonald and Muller, so that we have
extracted the qualitative information from the system
studied by Criado-Sancho et al. [15], which points,
however, the new features that we have just outlined, and
which agree qualitatively with the experimental behavior, in
contrast with the predictions of Eq. (1), which do not exhibit
these previous features. A detailed analysis of the system
considered by MacDonald and Muller would be certainly
very interesting.

Here, we have adopted a rather macroscopic and
phenomenological approach, whose analysis should be
complemented in the future by further microscopic studies.
Indeed, on the one side, it would be interesting to compare
the reduction of the effective diffusion coefficient obtained
from our thermodynamic arguments, with the reduction
obtained in some microscopic analyses by Ottinger [10].
On the other side, a deeper comparison of the generalized
thermodynamic potentials of extended irreversible
thermodynamics with those appearing in the generalized
Hamiltonian formulation of rheological equations would
be also useful.

Thus, in our opinion, the interest of the present work is
twofold. On the one side, it allows to compare the effects of
a modification of a constitutive Eq. (1), which takes into
account a coupling between shear stress and diffusion but
ignores the modifications in the equation of state, and
Eq. (5), which takes into account both effects. Indeed,
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while many authors generalize the transport equations far
from equilibrium, most of them do not modify the equations
of state. Here it is seen that both changes should be consid-
ered far from equilibrium. On the other side, the paper has
an experimental interest, as it hints to a possible explanation
of the enhancement of shear-induced migration, which has
two different contributions: that arising from the coupling
term in Eq. (1) and that arising from the nonequilibrium
equation of state, considered in this paper.

Before concluding the paper a few useful comments are
made here. We must emphasize that the nonequilibrium
chemical potential used in this paper has not been built ad
hoc for this problem, but that has a macroscopic and micro-
scopic theoretical basis analyzed in detail in Refs. [13,14]. A
nonequilibrium chemical potential appears in other analyses
of phase separation under flow, as for instance in some
approaches which are based on a dynamical analysis of
the concentration fluctuations, which may be enhanced
due to the flow [19–23]. Such dynamical approaches have
been compared in detail with the thermodynamic approach
in Ref. [24], in the problem of the shift of the shear-induced
spinodal line in polymer solutions, where both approaches
coincide—if use is made of the same form for the non-
equilibrium chemical potential—in the long-wavelength
limit. Of course, the dynamical approach is more general
and gives further contributions not included in the thermo-
dynamic approach when the wavelength of the perturbations
is comparable to the gyration radius of the polymer. A non-
equilibrium chemical potential dependent on the viscous
pressure may also arise in a stochastic analysis based on a
Langevin equation for the fluctuations of both the concen-
tration and the viscous stress [25], as the total distribution
function is projected onto the space of these two variables,
in contrast with the classical thermodynamic analysis where
the viscous stress is not considered as an independent
variable.

It could be argued that, since shear flow is nonintegrable,
its dynamics and steady states are generally not described by
state functions. We have considered in detail this remark in
Ref. [26], where we have considered a statistical description
not based on the canonical distribution with only one
Lagrange multiplier conjugated to the energy but with a
more general description based on two Lagrange multi-
pliers, one conjugated to the energy and the other one
to the viscous stress. This is certainly a topic open for

discussion in recent nonequilibrium thermodynamics
beyond the local-equilibrium approximation. In any circum-
stance, this paper shows that the inclusion of the nonlinear
effects accounted for the present nonequilibrium chemical
potential is able to give the correction of two orders of
magnitude necessary to agree with the experimental data.
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